Our Researchers


Dr Amali Mallawaarachchi, Garvan Institute of Medical Research, Sydney

A novel genetic test for ADPKD – A new genetic sequencing technique which has shown promising results was previously trialled and now requires testing a larger study.

Partnering with the Mayo Clinic, this grant will work to test this with patients who have been sequenced by more established methods. It is anticipated that comparing the two methods will show the new test to be more detailed and accurate and to establish it as the lead genetic test for PKD in Australia. This will result in improvements for patients and assist with understanding underlying causes and to find a cure.

To read the final report please click here.


Professor Jacqueline Phillips, Macquarie University, Sydney

Genes and cellular stress in PKD- This grant will investigate how PKD genes can cause an increase in stress signals in kidney cells that drives cell damage and progression of kidney disease. 

These same processes can also be driven by the build-up of toxins in the blood that arises when kidney function declines and this project will further test if the combination of PKD mutation and toxins worsens the stress response in the cell. Determining how PKD leads to cell damage has the potential to change the way we treat patients from symptomatic to strategically targeted.


Dr Bo Wang, Monash University, Melbourne

The therapeutic potential of miRNA-based MAPK inhibition to slow the progression of PKD
Several therapeutic interventions have been designed specifically to inhibit cell proliferation in a variety of animal models of PKD. A cell signal–regulated kinase (MAPK) inhibitor is shown to effectively block cyst growth and kidney enlargement, and to preserve kidney function.

Recently, a unique microRNA was discovered that is important in regulation of gene expression and can slow down the over proliferation of kidney cells that lead to cyst formation. The project will investigate the mechanisms of microRNA in maintaining normal kidney cell function that will result in reduced cyst growth. The study will provide a novel target for PKD treatment with a high potential for clinical translation.


Dr Annette Wong, Westmead Institute for Medical Research, Sydney

Validation of copeptin as a prognostic molecular biomarker in patients with CKD stages 1 – 3 due to ADPKD- Predicting patients at high risk of kidney failure who therefore require medical follow-up is important however, currently there are no blood tests to provide this information.

Vasopressin is a natural hormone in the body that may cause kidney cysts to grow bigger. In the past it has been difficult to measure vasopressin but it can now can be measured easily using a test for copeptin. This project will determine if a simple blood and/or urine test for copeptin can help predict this risk in patients with early-stage ADPKD.